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The path probability method (PPM) of irreversible statistical mechanics has been successfully 
applied to various diffusion problems. The major advantage of this atomistic treatment over the 
phenomenotogical approach of irreversible thermodynamics is that all Onsager matrix 
coefficients can be derived analytically so that relations among measurable quantities can be 
clearly understood in terms of microscopic parameters. This review article attempts to present 
the PPM in the simplest possible form. The importance of the PPM as an atomistic technique 
is illustrated using a simple example. The applicability and limitations of the technique are 
also emphasized. 

1. I n t r o d u c t i o n  
Atomic transport (diffusion) plays an important role 
during the processing and use of materials at high 
temperatures. In many cases, this is the single most 
important process occurring. For instance, atomic 
transport often provides the means by which the solid 
is fabricated (e.g. sintering, interdiffusion, etc.). Atomic 
transport is sometimes the phenomenon which is util- 
ized in devices, e.g. sensors utilizing solid electrolytes. 
This phenomenon can also be responsible for the 
limited lifetime of materials in service, e.g. creep, 
oxidation, demixing, etc. 

Diffusion in solids is a well established area of 
research, and it appears that the fundamental concepts 
of diffusion have been well accepted. However, the 
treatment of diffusion has mostly been phenomeno- 
logical in nature, and fails to provide much under- 
standing at the microscopic level. Although in simple 
cases, a formal solution of Fick's equation can give 
satisfactory answers, in most cases it is difficult to find 
correct interpretations based on a phenomenological 
treatment. Even if one resorts to the Onsager equa- 
tions of irreversible thermodynamics, it is often diffi- 
cult to define clearly driving forces for diffusion and to 
derive the content of the Onsager matrix well enough 
to achieve a clear understanding. 

Atomistic treatments based on random-walk theory 
have been quite successful in deriving the correlation 
factor in tracer diffusion [1-31. In this case, because 
single elements are treated in the limit of very low 
defect concentration, no complicated model is re- 
quired and diffusion can be calculated in a straightfor- 
ward fashion. Nonetheless, the contribution of this 
atomistic approach to our understanding of diffusion 
has been quite significant. It is clear, therefore, that an 
atomistic theory to treat diffusion in more complex 
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cases such as highly defective solids and multicom- 
ponent interacting systems is likely to lead to a clearer 
understanding. 

The essence of an atomistic theory of diffusion is to 
derive the Onsager equation in a multicomponent 
system 

Ji "~ -- ~ L o X j  ( | )  
J 

where Ji and Xi represent, respectively, the flow and 
the driving force for diffusion of the ith species, and L~i 
is the Onsager matrix coefficient. Such analytical ex- 
pressions are quite helpful in identifying measurable 
quantities (e.g. diffusion coefficient, ionic conductivity, 
etc.) in terms of atomistic parameters such as jump 
frequencies and interatomic interactions. If sufficient 
information is available on these quantities, specific 
predictions can be made or, conversely, diffusion ex- 
periments can be used to evaluate these fundamental 
properties for which there is no straightforward 
method of calculation or measurement. 

The path probability method (PPM) of irreversible 
statistical mechanics has been quite successful in 
deriving the Onsager equation analytically based on 
microscopic models. The major advantage of this 
technique is that all Onsager matrix elements and, 
hence, measurable transport properties can be identi- 
fied in terms of microscopic variables. This is not an 
alternative technique, but rather serves as a supple- 
ment to the well established atomistic treatments of 
simple cases, the phenomenological treatment of 
multicomponent diffusion, the linear response theory 
and computer simulations. 

Although the PPM has proven to be versatile, there 
is a lack of clear understanding of the nature of 
approximations in the technique. In this context, it is 
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especially important to recognize where the PPM 
stands in relation to other atomic theories of diffusion 
such as the pair-association method [4], the master 
equation method [5], and the Monte-Carlo simulation 
method [6]. This will be discussed later, once the 
principles of the technique have been introduced. 

2. F o r m a l i s m  of  t h e  P P M  
The original paper by Kikuchi [7] gives an excellent 
introduction to the PPM, and a review article by Sato 
[8] explains its basic principles and applicability to 
transport problems. Here, only the characteristic fea- 
tures of the technique will be reviewed very briefly. 

The path probability method is an extension of the 
cluster variation method [9] (CVM; also developed by 
Kikuchi) of equilibrium statistical mechanics to time- 
dependent processes. The extension is easy to follow 
once the technique of the CVM is understood. 

The CVM can be characterized as a technique 
based on the variation principle common to equilib- 
rium statistical mechanics. In essence, the equilibrium 
state is represented by the most probable state speci- 
fied by the state variables {a} which make the free 
energy F{a} = E { a } -  TS{a}, a minimum, or the 
partition function Q {a} = exp[ - F {a}/kT], a max- 
imum. The choice of the state variables {a} which 
represent energy E {a}, and the evaluation of entropy 
S{a} are the basic ingredients of the CVM. 

For example, if atoms interact only as nearest 
neighbours in a crystalline lattice system, the total 
energy E{a} of the system can be given by specifying 
the number of atomic pairs of each kind. The entropy 
S{a} can be evaluated by counting the number of 
ways of rearranging these fixed number of pairs on the 
lattice points (details can be found in [9]). When these 
pairs are taken as state variables, the treatment is 
called the pair approximation. 

In its general form, the CVM represents a hierarchy 
of approximations. Depending on the size of a basic 
cluster, they are successively called the point 
(Bragg-Williams), pair (Bethe), triangle, tetrahedron, 
octahedron approximations, etc. The degree of ap- 
proximation in the CVM can be improved systemat- 
ically by increasing the size of the basic cluster. 

The PPM deals with the time evolution of the state. 
These states, specified at a time instant, are described 
by the state variables as used in the CVM. A change of 
the state occurs via a unit process. This unit process, 
in the case of diffusion, is a jump of an atom to its 
neighbouring vacant site. This process, therefore, con- 
nects a pair of lattice sites. The probability that a 
particular process occurs can be utilized as a variable 
to characterize a change of a state. These are called the 
path variables. In the PPM, a set of path variables 
{A} is defined and the path probability function 
(PPF), P{A }, is constructed in a corresponding fash- 
ion to constructing the partition function in the CVM. 
The PPF is conveniently divided into three factors 
[10]. The first one corresponds to the transition prob- 
ability of the system for which there is no counter part 
in the free energy function (FEF) of the CVM. The 

second factor is a generalization of the energy factor in 
the CVM, and consists of terms such as activation 
energy of jumps and energy required to break bonds 
with neighbouring atoms. The third one corresponds 
to the entropy factor, and is calculated by counting all 
possible ways of constructing the paths. The most 
probable paths (or changes) are then determined by 
maximizing P(A}. The correspondence between the 
PPM and its equilibrium counterpart, the CVM can 
be summarized as shown in Table I. This correspond- 
ence makes the PPM very tractable at the microscopic 
level. 

Therninimization of the free energy (or maximiza- 
tion of entropy) in the CVM is to find the state of 
"largest probability" of appearance. This procedure is 
based on the theory of probability concept, and is 
more fundamental than the second law of thermo- 
dynamics [11]. In fact, the second law is derived from 
it. However, this procedure is based on a basic postu- 
late that each state being considered has the equal a 
priori probability of appearance. Kikuchi used the 
concept of the largest probability in the PPM as well. 
The path which is observed is the path of most prob- 
able occurrence. This is not derived from the second 
law, but holds when the basic postulate holds. The 
postulate is that every path being considered is a 
priori equally probable, or appears with a certain 
probability. This maximization holds, however far 
the state may be away from equilibrium. Usually 
Markovian processes are treated in the PPM, but 
according to Kikuchi, a similar path concept can be 
used in non-Markovian cases. Moreover, the PPM is 
not limited to the most probable path only, but fluc- 
tuated paths away from most probable ones are also 
contained in the formalism [10]. 

A consequence of the maximization process in the 
PPM is that the distribution in the overall transition 
probability is given as an average of the state and not 
as the instantaneous value when the atom is about to 
jump. Accordingly, the PPM has not been very effect- 
ive in treating transport problems where the motion of 
individual particles is at stake (e.g. the calculation of 
the correlation factor). In fact, as will be discussed 
later, any technique using statistical mechanics should 
have this problem as an inherent element. Sato 
[12, 13] has determined a way to correct this problem 
within the pair approximation by changing some of 
the averaging processes of the original PPM. 

It has been established that in the pair approxima- 
tion of the PPM, the most probable path expressions 
can be written simply by inspection without going 
through detailed calculations [7, 8]. For example, 
the expression for the most probable path for an 

TABLE I 

CVM PPM 

Define state variables Define path variables 
Construct free energy Construct path probability 
function (FEF) function (PPF) 
Minimize FEF Maximize PPF 
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atom exchanging with a vacancy to the right can be 
written as 

1 ~ 
�9 x !  ~ / 

(2) 
where 

and 

Wi = Oi e-~u~ 

~ =  1/kT 

K i j  : e -g'~ u 

Here, 0 i represents the attempt frequency, ui is the 
reference activation energy (in the absence of the inter- 
actions), 2r is the co-ordination number of the lattice, 
At is the time interval during which an atomic jump 
occurs, ~u is the interatomic interaction, x} v) is the 
atomic fraction on the vth atomic plane, and yl~ ) is the 
probability of finding a pair i-j across the nth bond 
(Fig. 1). The subscript v is used to denote vacancy and, 
hence, y~ represents the probability of finding a va- 
cancy near an atom i. This term is conveniently called 
the vacancy availability factor. The bracketed terms 
represent the effect of the surrounding on the jumping 
atom and is called the bond-breaking factor. A phys- 
ical image of the bond-breaking factor is shown in 
Fig. 1 for a b c c lattice (2r = 8). Notice that across the 
nth bond, (r - 1) bonds need to be broken, because 
one of the neighbouring sites is a vacancy. Equation 2 
tells us precisely how the jump of an atom depends on 
the availability of vacancy in its neighbourhood, and 
how the jump is influenced by the surrounding atoms. 
Similarly, an expression can be written for path vari- 
able involving exchange to the left, Y~)/. The gen- 
eralization of the inspection scheme for higher than 
the pair approximation is not straightforward and, yet 
to be formulated. 

The atomic flow is then defined across a lattice 

v-1 v v+l 

Figure 1 Effect of bond breaking as the ith atom on the vth atomic 
plane exchanges with a vacancy on the (v + 1)th plane across the 
nth bond. Springs indicate the bonds [8]. 

plane in terms of the net change of number of atoms 
in a particular direction (this is proportional to the 
difference in the path variables associated with the 
atom-vacancy exchange in opposing directions, i.e. 
Y ~ -  Y~{). The Onsager equation for diffusion is 
finally derived by evaluating these path variables in 
the linear range. Such derivations have been illustra- 
ted step-by-step in earlier publications [7, 8, 14, 15]. 

Like most treatments, the PPM in the past has also 
been restricted to linear-range calculations. Such cal- 
culations are very useful for characterizing transport 
processes in a material near equilibrium when im- 
posed forces are small�9 In real-life applications, how- 
ever, the driving force for atomic diffusion may be so 
large that the validity of the linear-range Onsager 
equation is not warranted, and it is important to 
include non-linear contributions�9 It should be noted 
that the PPM can easily be extended to include such 
contributions by keeping terms of higher order in the 
expansion of the path variables. 

3. Flow expressions by the PPM 
The importance of an atomistic treatment such as the 
PPM can be better illustrated by choosing an ex- 
ample. For the sake of simplicity, a one-component 
system exposed under a chemical potential gradient, 
r and a temperature gradient, ~k, is chosen. In such 
a case, the atomic flow, J~, and the heat flow, JQ, 
derived by the PPM in the pair approximation can be 
expressed as 

J1 = - -  ~ T ) g l  - -  T (3a) 

JQ = J 1 Q 1  - K * ] / "  (3b)  

where 

L l l  = 

L1Q = 

K *  = 

a2 Y1 (4a) 

Q 1 L 11 (4b) 

L i l l E  ~ - 2p1E1 + p~ - (2c0 - 1)A~2/2] 

(4c) 

where a is the jump distance, and K* is the thermal 
conductivity due to atomic transport. The energy of 
transport, E~, the heat of transport Q~, and the jump 
probability, Y1, are expressed as 

E1 = ul + ~* (5a) 

Q1 = E1 - lal (5b) 

Y1 = At ~4/lYlv (5c) 

In the above expressions, e~' represents the effective 
interaction (the word effective indicates that the 
quantity includes the effect of the neighbouring 
atoms)�9 The term Ae represents the feedback effect 
which indicates the compensation of the effect on the 
reference system when a flow of a finite number of 
particles is measured [14]�9 The other terms are the 
same as introduced earlier. The effective jump fre- 
quency, W1, is expressed in terms of the bare exchange 
frequency, wl, and the bond-breaking factor, F, as 

I4/i = wl  F (6) 
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with 

W1 = 01e -("'/kr) (7a) 

F (Y l l e -~ '~ / k r+Y lv )  (2C~ 
= (7b) 

X1 

Again, notice that the jump probability consists of the 
vacancy availability factor, Ylv, and the bond-break- 
ing factor. In the case of an ideal solution (a~j = 0), F 
would be unity indicating that the surrounding atoms 
would not have any effect on the jumping atom. A 
major consequence of the PPM derivation of thermal 
diffusion is that the content of such quantities as the 
energy of transport, El, and the heat of transport, Q1, 
can be identified in terms of microscopic quantities, 
which has not otherwise been possible. This example 
clearly shows how a transport problem can be de- 
scribed in terms of detailed atomistic features by appl- 
ying the PPM. In a multicomponent system, similar 
microscopic features appear in an integrated 
fashion [14, 16-18]. 

4. Appl icabi l i ty  and l imitat ions of 
the PPM 

The PPM has been applied to a variety of transport 
problems such as thermal diffusion [14, 16-19], 
chemical diffusion in multicomponent alloy systems 
[20], superionic conduction [21-31], tracer diffusion 
[8, 13, 32-36], demixing of oxides [15-17, 37, 38], the 
mixed alkali effect [39-41], oxygen diffusion in high 
To superconductors [42], kinetics of phase trans- 
formation [43-46], evolution of cellular structure [47] 
and kinetics of crystal growth [48-50]. Instead of 
discussing all of the applications, a few will be high- 
lighted to illustrate the significance of the PPM as a 
microscopic technique. 

During the past few years, an atomistic approach 
for treating the demixing problems in multicompon- 
ent oxides has been developed based on the PPM. The 
demixing, defined as a change in the composition of a 
multicomponent system created due to the difference 
in the diffusivities of the constituent components, can 
be a significant source of deterioration of materials in 
high-temperature technologies [38, 51-55]. The PPM 
treatment enables one to correlate demixing behavi- 
our to microscopic material properties and, thus, 
serves as a complement to the phenomenological 
treatments. In addition to confirming most of the 
results of the phenomenological treatments, the 
atomistic approach has been able to give some new 
insights into the problem. 

The atomistic treatment, for the first time, was able 
to clearly identify the difference between the Soret 
effect and the demixing effect [16]. Some demixing 
experiments have been carried out for binary oxides 
under a temperature gradient under a variety of 
boundary conditions [52]. Among these, experiments 
performed in the presence of an oxygen atmosphere in 
contact with the specimen can allow the flow of vacan- 
cies in and out, and this is called the open case [38]. 
This corresponds to the demixing effect. In the ex- 
periments under a temperature gradient on encapsul- 

ated samples, on the other hand, specimens are not in 
contact with an oxygen environment and do not allow 
the flow of vacancies. This case is called the closed case 
and corresponds to the Soret effect. 

The application of the PPM to this problem re- 
vealed some new physics. In the closed case, the con- 
centration of vacancies plays an important role in the 
redistribution of the constituents [18, 19]. If the va- 
cancy concentration is low, it is difficult to pack more 
particles into the lattice (the compressibility is low) 
and the cations redistribute in the opposite directions 
(Fig. 2) in a way not to change the vacancy distribu- 
tion. On the other hand, if the vacancy concentration 
is high, the redistribution can occur in the same direc- 
tion (Fig. 3). In the open case, on the other hand, only 
the ratio of vacancy concentrations (determined by the 
Po2) on the two surfaces plays an important role in 
determining the demixing profile. The difference be- 
tween the open case and the closed case is readily seen 
in Fig. 4. It is to be noted that in the open case (curve 
a), the effect is far greater than that in the closed case 
(curve b) which agrees with the experimental results 
[5@ The most important feature to notice, however, 
is that because of the difference in the compressibility 
in the two cases, the accumulation of the same species 
occurs in the reverse directions. Identification of such 
a difference in boundary conditions indicates the cap- 
ability of the atomistic treatment. 

The PPM was also applied to study the transient 
behaviour of the demixing [15]. One of the important 
conclusions of the work is that the time evolution of 
the demixing can essentially be represented by a diffu- 
sion equation (equivalent to Fick's second law) and, 
hence, the time required to reach the steady state is 
determined by the time needed for atoms to percolate 
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Figure 2 Two-component Soret effect for low vacancy 
concentrat ion [18]. The abscissa represents the coordinate 
normalized by the length of the sample A~, along the diffusion 
direction. TI, 7"2, temperatures of the two surfaces ("left" surface is 
the low-temperature side); x 3, the vacancy concentration; x l ,  x2, 
concentrat ion of the two components;  u~, u2, act ivation energy of 
motion for components  I and 2, respectively, u~ = 1.5, u z = 1.0, 
T 1 = 1200, T z = 1300, x 3 = 10 -3. 
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Figure 3 Two-component Soret effect for high vacancy 
concentration [18]. u 1 = 1.05, u 2 = 1.0, T 1 = 1200, T 2 = 1300, 
x3 = 10 1. 
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Figure 4 Comparison of the demixing behaviour in (a) the open case 
and (b) the closed case, calculated by the PPM using the same 
parameters [16]. 

through the entire length of the specimen. The treat- 
ment also substantiated the usually adopted assump- 
tion that the "local equilibrium condition" holds even 
for the non-steady state diffusion process provided 
that the change of macro variables, such as concentra- 
tion, is slow compared with the frequency of a unit 
process (e.g. jump of an atom to a vacancy). However, 
this assumption is not valid during the very early stage 
of the transient behaviour, and poses serious limita- 
tions to the applicability of the P P M  to the problem. 
Because the local equilibrium condition is implicitly 
used in deriving the transition probabilities in the 
PPM, the treatment of the early stage of a transient 
behaviour is yet outside the scope of the technique and 
remains as a challenging future problem. 

The PPM has extensively been applied to transport  
problems in superionic conductors [-21-31]. One of 

the common characteristic features of these materials 
is the existence of a large number of available sites 
which makes them highly defective. These are a group 
of solids, for example, which cannot be handled by any 
straightforward extension of the random-walk theory 
of diffusion. In fact, only the P P M  and the Monte 
Carlo method have so far been successfully applied to 
treat transport  problems in these materials. 

The application of the P P M  has mainly been to the 
transport  problems in the two-dimensional honey- 
comb lattice of 23-alumina superionic conductors. One 
of the important  predictions of the calculation is the 
appearance of the "physical correlation factor, f b "  in 
the ionic conductivity [-21]. This term has a strong 
compositional dependence as shown in Fig. 5, which 
has also been confirmed by the Monte Carlo calcu- 
lation [57]. 

The existence of the physical correlation factor was 
not even suspected in the past [-58, 59]. This factor 
arises because of the fact that the diffusion (conduc- 
tion) path of ions in solid is strictly limited and the 
motion of ions often deviate from the random-walk. 
This factor represents the efficiency of the motion of 
the assembly of ions towards a long distance conduc- 
tion and, hence, it is more appropriately called the 
"percolation efficiency". The percolation efficiency de- 
pends on the topology of the diffusion (conduction) 
path, and is measured relative to that of the random- 
walk. If the key sites of conduction paths are blocked 
for some reason, the percolation efficiency and hence 
the conductivity can drop drastically. On the other 
hand, local motion of ions is not seriously affected. In 
such a case, if the ionic conductivity is measured at 
high frequencies, the drop in the conductivity due to 
blocking is expected to vanish [60]. Based on the 
concept of the percolation efficiency, Sato et al .  
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Figure 5 The composition dependence of the physical correlation 
factor, f~, in the honeycomb lattice of 13-alumina [21]. The reduced 
temperature is defined as T* = kT/feJ, where le] is the magnitude of 
the interaction between the nearest neighbouring conduction ions. 
Notations c and x have been interchangeably used to denote 
composition in this paper. 
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E39-41] have been successful in explaining most fea- 
tures of the mixed alkali effect (MAE). The MAE, 
observed in glasses [61, 62] and [3-aluminas [63-67], 
represents a drastic drop in the ionic conductivity 
producing a minimum in intermediate compositional 
range, as one type of alkali ion is progressively re- 
placed by another type of alkali ion. This is believed to 
be due to the blocking of conduction paths by one 
kind of ion created by the mutual interactions among 
different kinds of ions [41]. A detailed review of the 
physical correlation factor can be found in E58]. 

Recently, the PPM has been applied to the prob- 
lems of chemical diffusion in multicomponent alloys 
[20]. One of the outstanding problems in this area is 
to understand the thermodynamic features of diffusion 
paths such as the location of the zero-flux plane (ZFP) 
[68-70]. The distribution of compositions due to in- 
terdiffusion is represented by a curve which connects 
the compositions of terminal alloys in the composition 
diagram [68]. This curve is called the diffusion path 
and is considered to be a characteristic of the diffusion 
couple. The PPM treatment predicts that the location 
of the ZFP is determined by complex factors such as 
the relative magnitudes of fluxes of constituent ele- 
ments rather than by clear-cut thermodynamic fac- 
tors. However, an indirect but close relationship exists 
between intersection points of diffusion paths and 
isoactivity lines drawn through the terminal alloys, 
and the locations of the ZFP as predicted by 
Dyananda [68]. Although this work essentially con- 
firms the general predictions of the phenomenological 
approach, this is the first attempt to identify the 
microscopic contents of such empirical concepts as the 
diffusion path and zero-flux plane. 

Although the PPM has proved to be very versatile 
in dealing with a variety of kinetic problems, some 
unsatisfactory features have been found regarding the 
calculation of the correlation factor. This is, as men- 
tioned earlier, a consequence of the inherent time 
correlation problem in the PPM in following indi- 
vidual particle motion. In fact, the method has been 
found to be very reliable when the change of macro- 
variables such as the degree of long-range order which 
is homogeneous in space is followed. However, be- 
cause the technique of equilibrium statistical mech- 
anics, in which time is not a concern, is utilized to 
derive time-dependent variables, there is a limitation 
in its scope of applications. Sato has determined a way 
[12, 13, 71] to correct this problem within the pair 
approximation by introducing so-called "time" and 
"instantaneous distribution" conversions. These con- 
versions produce results with the same degree of ap- 
proximation as that in the homogeneous case, and 
agree very well with other calculations [t2, 13]. One 
serious limitation of these conversion schemes, how- 
ever, is that their generalization beyond the pair ap- 
proximation is not possible in a simple fashion. 

Calculation of the correlation factor using the kin- 
etic equation approach of Allnatt and co-workers 
[72-74] shows similar features as the PPM. Fig. 6 has 
been reproduced from [72], where the solid lines are 
based on Manning's random alloy model which is 
known to be close to being exact. The dashed lines are 
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the results of the kinetic equation approach which 
show a systematic deviation from Manning's results. 
The approximations become increasingly inaccurate 
as the difference in the jump rates are increased, and 
do not give the expected percolation threshold behavi- 
our characteristic of extreme jump-rate ratios. 

Calculations using the original PPM exhibit very 
similar deviation as shown in Fig. 7 ([12]). However, 
once Sato's "time" conversion is introduced into the 
PPM, the results (solid lines) approach Manning's 
results. Similar improvements have also been reported 
in the kinetic equation approach based on a particular 
method of decoupling of hierarchy of equations [74]. 
The decoupling is based on an approximation which 
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Figure 6 The correlation factor fA as a function of the concentration 
of B atoms for an fcc A-B alloy with jump frequency ratios 
(w = WA/WB) as marked. ( -) Manning's results, (- -) based 
on the kinetic equation theory [71]. 
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Figure 7 The correlation factor fA calculated by the PPM for the 
same case as in Fig. 6 with jump frequency ratios as marked. (---) 
The original PPM results, ( ) produced by introducing the 
time conversion into the PPM [12]. 



relates terms of third-order to terms of second-order in 
fluctuations in the occupancies of the sites. 

These remarkable similarities in the results of the 
PPM and the kinetic equation approach may be use- 
ful in understanding the fundamental nature of the 
so-called time correlation problem. Is this an inherent 
problem of the PPM, or is it a consequence of the 
approximations due to the size of the basic cluster? It 
would be a worthwhile effort to extend the PPM 
calculation of the correlation factor beyond the pair 
approximation. Such calculations may also give us 
some clue about the fundamental justification of 
Sato's conversion schemes. 

It is important to recognize where the PPM stands 
in relation to other methods in diffusion theory such 
as the well-known pair-association method (PAM of 
Lidiard [4]). The PAM has specifically been designed 
for dilute alloys and extensive calculations have been 
made with great success [75]. However, this technique 
cannot treat time-dependent many-body problems 
such as diffusion in highly defective systems and con- 
centrated alloys [76]. On the other hand, the PPM 
was formulated to deal specifically with these prob- 
lems. The PPM certainly makes use of some of the 
strategy of the PAM, and to this extent may be viewed 
as a generalization of that method. 

Recently, efforts have been made to compare the 
PPM as a kinetic technique with other methods such 
as the master equation method (MEM) adopted in 
irreversible statistical mechanics [5]. In the point and 
the pair approximations, both methods lead to identi- 
cal results [10, 77], while they vary in the triangle 
approximation. Although at this stage it is difficult to 
judge the superiority of one method over the other, the 
PPM has some specific advantages. Because the PPM 
has its equilibrium analogue, the CVM, it is physically 
more tractable, and the degree of approximations can 
be systematically improved. 

Computer simulation such as the Monte-Carlo 
method (MCM) has found widespread applicability in 
transport problems [6, 57], yet the need for an analyt- 
ical treatment such as the PPM remains. Without 
an appropriate theoretical framework, the computer 
simulation results are difficult to interpret. On the 
other hand, due to approximations involved, results of 
the analytical treatments are not exact. In fact, analyt- 
ical treatment and computer simulation are essentially 
complementary, and the PPM calculations have been 
found to agree well with the MCS results [13, 78-82]. 

5. Conclusion 
The path probability method (PPM) represents a sys- 
tematic analytical technique for dealing with kinetics 
of cooperative systems. The importance of such a 
treatment is to gain an overall understanding of the 
phenomena at an atomistic level, but not necessarily 
in obtaining exact quantitative assessments. This 
approach essentially serves as a complement to the 
phenomenological treatment of irreversible thermo- 
dynamics and the other atomic theories. Even with its 
present limitations, this method is by far the most 
comprehensive technique available for dealing with 

atomic transport in such complex cases as highy defec- 
tive solids, and multicomponent interacting systems. 
It is anticipated that the PPM in conjunction with 
other atomic theories of diffusion will continue to 
make a major impact on our understanding of the 
complex phenomenon of many-body diffusion. 
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